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Minireviews
Emerging machine learning (ML) methods are widely applied in
chemistry and materials science studies and have led to a focus on
data-driven research. This Minireview summarizes the application of
ML to rechargeable batteries, from the microscale to the macroscale.
Specifically, ML offers a strategy to explore new functionals for
density functional theory calculations and new potentials for molec-
ular dynamics simulations, which are expected to significantly enhance
the challenging descriptions of interfaces and amorphous structures.
ML also possesses a great potential to mine and unveil valuable
information from both experimental and theoretical datasets. A
quantitative “structure—function” correlation can thus be established,
which can be used to predict the ionic conductivity of solids as well as
the battery lifespan. ML also exhibits great advantages in strategy
optimization, such as fast-charge procedures. The future combination
of multiscale simulations, experiments, and ML is also discussed and
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tural change of the electrode material
and interface subsequently induces
a rapid degradation of the capacity
and even causes safety hazards. Al-
though great progress has been made
both experimentally and theoretically
with LMBs,*! it is still a great chal-
lenge to rationally construct a safe and
high-performance LMB and efficiently
monitor its working state. Experimen-
tal tests, including long-term cycling
and rate capability, are widely adopted
to evaluate the electrochemical perfor-
mance of a functional material or
recipe. However, it is almost impossi-
ble to optimize the battery perfor-
mance in a short time through a mere
trial-and-error approach due to the

the role of humans in data-driven research is highlighted.

1. Introduction

To mitigate the acceleration of global warming, achieving
a zero net carbon dioxide emission has become a goal with
international consensus, which requires the reconstruction of
energy storage systems for all types of usage. Reducing the
consumption of routine fossil fuels such as coal, oil, and gas, as
well as increasing the usage of renewable energy, such as wind
and solar energy, are in high demand to establish a green and
sustainable energy system. Consequently, advanced energy
storage technology plays an unprecedent role because of the
wide distribution and intermittency of renewable energy.
Energy storage devices are expected to bridge the require-
ments of renewable energy and the energy demands of human
daily life and industry.!%

As a typical energy storage device, the lithium (Li) ion
battery (LIB) has been used in a wide range of applications—
from portable electronics to electric vehicles and even large-
scale smart grids.*? To further increase the consumption
percentage of renewable energy, the development of ad-
vanced batteries with high energy densities, high power
densities, long lifespans, and reliable safety is deemed
essential and also the ultimate goal of the energy community.
Beyond conventional LIBs, lithium metal batteries (LMBs),
including lithium-sulfur (Li-S) batteries and solid-state
batteries, emerge as promising candidates for the next-
generation energy storage devices because of their ultrahigh
energy densities. !

Despite their promising energy densities, the practical
application of LMBs faces huge challenges, including the
limited fundamental understanding of the battery working
mechanisms, the lack of rational design guidelines for
advanced electrodes and electrolytes, and the extremely high
requirements for the packing technology.™”* Unlike routine
LIBs that are based on the Li" intercalation mechanism,
LMBs are based on conversion reactions, and complicated
multiphase reactions are typically involved. The large struc-
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abundancy in the material and compo-
nent space. Various characterization
techniques such as scanning electron
microscopy (SEM), transmission elec-
tron microscopy (TEM), and X-ray photoelectron spectros-
copy, are often employed to probe the working mechanism or
chemistry of a material or method. However, in situ charac-
terization at the atomic level is very limited, which makes the
discovery of structure—function relationships and obtaining
a fundamental understanding of the working mechanism
extremely challenging. On the other hand, computational
chemistry and materials methods—especially density func-
tional theory (DFT) calculations and molecular dynamics
(MD) simulations—are widely applied in research on re-
chargeable batteries®!“!!l and have afforded fruitful insights
into the molecular interaction,'>'? interfacial reactions,'>'¥
and ionic transport mechanism.™ However, routine theoret-
ical studies often face great obstacles as the system size or the
required accuracy grows. The gap between simplified theo-
retical models and reality largely impedes the application of
computational simulations to describe complicated interfacial
problems in batteries, such as the solid electrolyte interphase
(SEI), the thermodynamics and kinetics of lithium polysulfide
conversion reactions, the electrolyte solvation structure at
electrode interfaces, and the ionic transport behavior at the
liquid-solid or solid-solid interfaces.

Recently, emerging machine learning (ML) technology
has brought new opportunities for both theoretical and
experimental studies in chemistry and materials science.!*!”!
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ML methods are expected to accelerate the development of
theoretical methods (e.g. developing new functionals!®'" or
potential functions®2?) so that larger systems can be handled
with higher accuracy. The structure—function relationship of
a complicated system can, therefore, be discovered and
unveiled more efficiently. More importantly, a novel research
approach has been established based on ML methods. This
statistically driven design is completely different from con-
ventional theoretical approaches, which mainly involve struc-
ture—property calculations or crystal structure prediction.!
The numerous datasets generated through high-throughput
calculations and experiments are fed into ML to discover
valuable information and hidden correlations, which can be
quite challenging in current physical science. Based on high-
quality datasets, the ML models have been shown to have the
ability to predict the physicochemical properties of materials
(such as ionic conductivity and viscosity?®!) and assist the
design of functional materials (such as drugs,”*! energy
materials,””? porous materials,” and small molecules®").
Consequently, experimental, theoretical, and data tools have
become three indispensable methods in current scientific
research and are displaying great potential in battery studies
(Figure 1).

In this Minireview, we focus on the application of machine
learning to advanced rechargeable batteries—from the micro-
scale to the mesoscale and finally to the macroscale. The
cooperation between ML and various theoretical or exper-
imental methods, such as DFT calculations, MD simulations,
the phase field method (PFM), the finite element method
(FEM), battery material characterization techniques, and
electrochemical performance tests are elaborated. Finally, an
outlook on how to combine experiments, theory, and machine
leaning to promote the practical application of next-gener-
ation batteries is provided.

2. An Overview on Machine Learning at Different
Time and Length Scales

Machine learning is a branch of artificial intelligence and
a method of data analysis that can learn from data, identify
patterns, and make decisions with minimal human interven-
tion. Driven by the rapid growth of data storage and related
computer science techniques, machine learning has bloss-
omed in recent years and has achieved wide applications, such
as in the computer sciences (e.g. image recognition), chemis-

Xiang Chen gained his bachelor degree and
PhD with Prof. Qiang Zhang from the
Department of Chemical Engineering at
Tsinghua University in 2016 and 2021,
respectively. He is currently a postdoctoral
fellow at Tsinghua University with Prof.
Qiang Zhang. His research interests focus
on understanding the chemical mechanism
and materials science of rechargeable bat-
teries through multiscale simulations and
machine learning.
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Figure 1. Three approaches in battery studies, including experimental,
theoretical, and data tools.

try and materials sciences (e.g. property prediction, materials
design), social media (e.g. production recommendation), and
even humanities and social sciences (e.g. automatic language
translation, paper reading). Data can be generated much
more easily from both experiments and theoretical calcula-
tions, whereas mining all the valuable information and hidden
correlations behind the data by conventional approaches
poses a tremendous challenge. Therefore, a variety of ML
methods have been developed, including the Bayesian net-
work, decision tree, artificial neural network (ANN), and
support vector machines (Figure 2).”*) The fundamentals of
these ML methods have been summarized well in many great
reviews,? 223! and we hereby focus mainly on the applica-
tions of ML to battery research.

Rechargeable batteries are generally composed of anodes,
cathodes, electrolytes, separators, current collectors, and
packing materials, and each component often consists of
several materials. For example, the electrolyte used in
commercial LIBs includes nearly 20 kinds of solvents, lithium
salts, or additives.’? Therefore, battery studies involve
various multidisciplinary scientific problems and are faced

Qiang Zhang received his bachelor degree
and PhD with Prof. Fei Wei from Tsinghua
University in 2004 and 2009, respectively.
After research at Case Western Reserve
University (USA) with Prof. Liming Dai and
at the Fritz Haber Institute of the Max
Planck Society (Germany) with Profs. Rob-
ert Schlégl and Dangsheng Su, he joined
the faculty of Tsinghua University in 2071.
His current research interests are advanced
energy materials, including Li metal anodes,
solid-state electrolytes, Li-S batteries, and
electrocatalysts.
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Figure 2. Summary of typical machine learning and artificial intelligence techniques. Reproduced with permission.””! Copyright 2019, American

Chemical Society.

with numerous engineering challenges from the microscale to
the macroscale. The research methods vary on different
length scales, including on the atom/molecule, cluster/crystal,
particle, electrode, cell, and finally pack (Figure 3). Not only
does ML exhibit great advantages for analyzing the large
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datasets generated and establishing quantitative relationships
for the rational design of a material or method, it also plays an
increasingly nontrivial role in promoting the development of
theoretical and experimental methods, such as the functionals
in DFT calculations and the interatomic potentials in MD
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Figure 3. The application of machine learning in battery research at different length and time scales. HF: Hartree—Fock, DFT: density functional
theory, MP: Mgller-Plesset perturbation theory, AIMD: ab initio molecular dynamics, MD: molecular dynamics, MC: Monte Carlo, kMC: kinetic
Monte Carlo, PFM: phase field method, and FEM: finite element method. The inserted figures were obtained from previous reports. Reproduced
with permission.’*?”) Copyright 2017, Wiley-VCH; Copyright 2020, Elsevier; Copyright 2019, Elsevier; Copyright 2018, Elsevier, and Copyright 2017,

Elsevier, respectively.

simulations. The ML models are expected to speed up
conventional high-accuracy calculations for large systems.
For example, MD simulations of 100 million atoms with
ab initio accuracy have been achieved by a deep-learning
potential approach.34

3. Microscale and Mesoscale
Simulations

classified into two categories: developing novel ML-assisted
DFT/MD methods and making predictions based on DFT/
MD results (Figure 4). The former aims to obtain energetic
and force-related information with reduced computational
cost, while the main target of the latter is directly predicting
properties of interest in the system.

Applying machine learning in atomic simulations

3.1. DFT Calculations and MD
Simulations Composition

Computational methods are ex-
tremely powerful and effective for
obtaining the electronic and geometric
structure, total energy, dipole moment,
and charge distribution of molecules
or crystals. Specifically, DFT calcula-
tions and MD simulations are widely
employed in battery studies and have
led to some great success with exper-
imental verifications, such as designing
functional hosts to mitigate the shut-
tling of lithium polysulfides in Li-S
batteries,*! probing electrolyte solva-

Elemental property

Crystal structure

Surface structure

Local environment

Energy

Force

Binding energy
LUMO/HOMO level
Redox potential
Dielectric constant
Diffusivity

tion structure and redox stabili-
ty, 121433 and unraveling the ionic
transport mechanism in solid electro-
lytes.*” The application of ML to DFT
calculations or MD simulations can be

24358 www.angewandte.org

Input layer Hidden layer Output layer

Figure 4. Correlating material parameters and physicochemical properties through machine-
learning approaches. LUMO: lowest unoccupied molecular orbital, HOMO: highest occupied
molecular orbital.
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The accuracy and speed of DFT calculations are usually
inversely correlated, which remains one of the major obsta-
cles when applying DFT calculations in large-scale models.
Emerging functionals, such as SCAN (strongly constrained
and appropriately normed),*!! has been shown to match or
even improve the accuracy of a computationally intensive
hybrid functional at almost GGA (generalized gradient
approximations) cost. More importantly, ML brings new
possibilities to speeding up the development of novel func-
tionals through training accurate exchange and correlation
functionals based on the electronic density."® Apart from
accelerating the development of the functionals, ML also
shows superior performance in determining the Hubbard U
parameter in DFT + U calculations compared to the conven-
tional linear response approach.l*”! Therefore, ML methods
are expected to improve the efficiencies and accuracies of
DFT calculations.

Not only does machine learning help to make DFT more
powerful, it also supplies a completely innovative perspective
to analyze the DFT calculations. The total energy of the
system is one of the most basic types of information obtained
from DFT calculations, from which many key physicochem-
ical parameters, such as binding energy, redox potential, and
diffusion barrier, can be derived. It is, therefore, quite
convenient to construct a large dataset containing the
energetic information of a class of functional materials by
DFT calculations, where ML models can then be adopted to
construct a scaling relationship between the structural and
energetic properties of the materials. This scheme is widely
applied in designing electrochemical catalysts!® for the
hydrogen evolution reaction,! oxygen evolution/reduction
reaction,™! nitrogen reduction reaction,*! and carbon diox-
ide reduction reaction.’! As a result, ML is effective in
promoting the development of metal-air batteries. A similar
paradigm has been established with Li-S batteries for
predicting the binding energies between lithium polysulfides
and cathode hosts.**! It should be noted that the choice of
descriptors for the materials and the construction of ML
models or algorithms are equally important in such ML
studies.

Although physicochemical properties can, in principle, be
calculated from the energies predicted by ML models for each
component in a system or a reaction, it is more convenient to
predict such terms of interest directly. For example, Jang and
co-workers predicted the electrode potential of organic
materials based on an ANN method.*) The electron affinity,
the highest occupied molecular orbital (HOMO) level, the
lowest unoccupied molecular orbital (LUMO) level, HO-
MO-LUMO gap, and the number of oxygen and lithium
atoms were chosen as the model features after careful
engineering of the features. The ANN model is in good
agreement with calculated results, with an averaged error of
3.54% . However, some input features of this model, such as
the electronic affinity and HOMO/LUMO level, are still
obtained from DFT calculations, which limits its scalability.
Okamoto and Kubo constructed two regression models
(Gaussian kernel ridge regression and gradient boosting
regression) to predict the oxidation and reduction potentials
of electrolyte additives."” The molecular features can be
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obtained directly from the geometrical structures, including
the number of atoms with the same coordination number, the
number of five-membered and six-membered rings, and a flag
to differ radical and nonradical molecules. The regression
model with 22 features has been proved effective in predict-
ing the redox potentials, especially the oxidation potentials,
which is further rationalized by molecular orbital analyses.

Other than predicting system energy or its related
parameters, ML is even more advantageous in determining
physicochemical properties that are otherwise hard or
expensive to obtain through either experiments or theoretical
calculations, such as the ionic conductivity of solid-state
electrolytes (SSEs), dielectric constant and viscosity of liquid
electrolytes, and mechanical properties of solids. Taking the
ionic conductivity of SSEs as an example, the apparent ionic
conductivity of an SSE is easy to obtain experimentally but it
is very sensitive to its synthesis conditions and testing
methods. The intrinsic ionic conductivity of the materials,
on the other hand, is hard to accurately measure through
experiments because of the difficulty of separating the
contribution from interfacial diffusivity. It is possible to
calculate the intrinsic ionic conductivity through ab initio
molecular dynamics (AIMD) simulations and mean square
displacement (MSD) analysis. However, such simulations are
generally computationally intensive. To circumvent such
a dilemma, Reed and co-workers developed a data-driven
logistic regression classification model based on experimental
ionic conductivity data.” Out of 12831 candidates, the model
identified 21 promising structures with high lithium ionic
conductivities. However, this ML model has 20 features but is
trained only on 39 experimental data points. Considering the
limitations of supervised learning models brought by the
scarcity in available data on material properties, Mo, Ling,
and co-workers developed an unsupervised ML model to
discover new SSEs with promising ionic conductivity.’ Li-
containing compounds were clustered into seven groups
based on their modified X-ray diffraction (mXRD) through
unsupervised clustering methods, which helps to identify the
common patterns in SSEs with high ionic conductivities. Such
an unsupervised learning scheme discovered 16 new fast Li
conductors with conductivities of 107*-107' Scm™', which
were further verified through AIMD simulations.

An alternative approach to break the limitations of
conventional DFT and AIMD calculations is to develop
highly accurate interatomic potentials. Different from the
potentials adopted in classical MD simulations, ML is able to
train from high-accuracy interatomic potentials obtained
from DFT and AIMD calculations. The training process
generally involves three key steps, building reference data,
fingerprinting atomic environments, and establishing the
correlation between the fingerprints and energies (Figure 5).
The accuracy of the as-obtained ML potential is largely
dependent on the selection of fingerprints, thus highlighting
the irreplaceable role of capturing the local atomic environ-
ment of interesting structures. Zong etal. has achieved
success in describing the pairwise, three-body, and many-
body contributions to total energy through the terms derived
from the change in bond length, material shape, and volume,
respectively.”” The fingerprints can subsequently be con-
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Figure 5. Developing machine-learning interatomic potentials. The
development generally includes three parts: building reference data,
fingerprinting atomic environments, and building the correlation
between the fingerprints and energies to produce the interatomic
potential. Reproduced with permission.?? Copyright 2018, Springer
Nature.

structed as long as those terms are well-defined. A variety of
ML methods can then be chosen to describe the mapping
between the fingerprints and atomic energies, from which
interatomic potentials are generated. In addition to the above
scenario, a deep-learning-based atomic potential has been
recently developed, which generates the descriptors atomi-
cally and is independent of manual choices.*”
ML-developed potentials have been widely applied in
lithium battery studies, mainly for simulating the ionic
transport in solid materials.’*> For example, Mueller and
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co-workers developed a machine-learning interatomic poten-
tial based on moment tensor potentials to probe Li*
conduction in cathode coating materials (Figure 6).*! Com-
pared with SSEs, coating materials often possess a much
lower ionic conductivity, which introduces great challenges to
investigate the ionic transport by AIMD simulations. The
machine-learning potential exhibits great superiority in high-
temperature AIMD simulations both in terms of accuracy and
computational efficiency (seven orders of magnitude faster
than AIMD). The reduced prediction error of the Li ion
diffusion barrier is mainly attributed to the improved statistics
as a result of an extended simulation time and the prevention
of phase transformation in high-temperature AIMD simula-
tions.

The above example demonstrates the huge advantages
and possibilities of ML intermolecular potentials in large
time- or length-scale models. Apart from simulating the
system energy or the ionic transport, ML interatomic
potentials are also expected to help resolve other key
challenges in rechargeable batteries: 1) probing the interfa-
cial structures and ionic transport at grain boundaries or in
amorphous materials, which often requires simulating a large
system, 2) probing the electric double layer at the electrolyte—
electrode interface, which strongly correlates to the electro-
chemical reactions and lithium ion (de-)solvation behaviors,
3) probing the solvation structure of electrolytes with com-
plicated components or strong polarizations, the model size of
which grows as the concentration of the electrolyte compo-
nents decreases. Despite the great progress achieved in
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at temperature between 300K and 700K '
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i) | = 6 0.01e\
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temperature T temperature by 50 K S ¢ Y
l a LisP>0, % Li,MnCl,
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No) 8 LZePsOi N\
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Figure 6. Machine learning intermolecular potential probes of ionic transport in solid materials. a) The flowchart of machine learning

intermolecular potential in probing ionic conductivity. b) The comparison of diffusivities determined by AIMD simulations at high temperatures
and LOTF-MD at intermediate temperatures on the Arrhenius plot. LOTF: “learning on the fly”, MSD: mean-square displacement, TMSD: total
mean-square displacement, D: diffusivity, and E,: diffusion barrier. Reproduced with permission.®*! Copyright 2020, American Chemical Society.
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polarizable force fields,” each treatment of polarization still
requires several assumptions, which inevitably introduces
limitations to the methods. ML intermolecular potential, on
the other hand, brings new possibilities to tackle these
complicated problems from an entirely different perspective.

3.2. PFM and FEM Simulations

Compared with atomic DFT calculations and MD simu-
lations, mesoscale simulations can, in general, describe larger
systems, successful applications of which have been well-
established in lithium battery studies.’**! For example, PFM
can accurately describe the microstructure evolution in
batteries, such as dendritic growth, phase separation, coher-
ency strain, and crack propagation. FEM, which is also
applicable in macroscale simulations, is mainly adopted for
analyzing electrochemical profiles, such as electric potential
and ion concentration. The incorporation of ML into
mesoscale simulations can also be categorized into two
groups: learning from DFT or AIMD results to provide
inputs for mesoscale simulations, as well as directly learning
from mesoscale simulation results to establish a quantitative
projection to experimental properties of interest. First, the
reliability of mesoscale simulations largely depends on multi-
ple physicochemical parameters and variants, such as free
energy, dielectric constant, and diffusion coefficient. Some of
these parameters can, in principle, be obtained through
conventional DFT and MD simulations. However, the limi-
tations of these microscale simulations start to become
pronounced as the complexity of the systems increases. ML
models can bridge this gap by extracting valuable information
from DFT and AIMD results and encoding it as the input for
mesoscale simulations. This method is, therefore, similar to
developing ML intermolecular potentials.””’ For example,
free energy density—a high-dimensional function of order
parameters, composition, temperature, and etc.—has a signifi-
cant impact on the reliability of phase field models but is
typically hard to acquire with high accuracy from atomic-scale
models or statistical mechanics. In an effort to circumvent this
issue, Garikipati and co-workers developed analytically
integrable deep neural networks (IDNNs) to represent the
free energy density, which is then fed into phase field
simulations to explore the phase stability of Li,CoO,.F"!
Furthermore, although the variants of finite element models
can in principle be obtained through experiments in most
cases, the workload to construct a complete variant map of
various parameters is actually overwhelming and not realistic.
ML, on the other hand, eases the workload, as it has the
capability to construct such maps based on information
extracted from limited experimental results. For example, Wei
and co-workers proposed a physics-driven ML-FEM algo-
rithm and applied it to research on the deformation of Li
metal, delivering highly accurate results with impressive
efficiency.!

Apart from learning from microscale calculations to
provide inputs for mesoscale simulations, ML can also
directly learn from mesoscale simulations to obtain a quanti-
tative relationship between various parameters and exper-
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imental properties of interest,® the superiority of which is

most prominent in the reduction of computational costs. For
example, Dingreville and co-workers constructed a surrogate
model for simulating the spinodal decomposition of a two-
phase mixture by the combination of PFM simulations and
a history-dependent ML approach, thereby reducing the
computational time immensely at a minimal cost to the
accuracy.® Such a ML-supported phase-field framework is
also potentially applicable to PFM simulations of batteries,
but requires further investigation. Other than reducing the
computational cost, the advantage of ML has also been
established in feature selection, as the most significant
parameters can be easily identified through feature-impor-
tance analysis, a built-in function for many common ML
algorithms. For example, Kriston et al. employed ML tech-
niques to analyze 780 different numerically simulated thermal
runaway events of LIBs and was able to identify five key
clusters that distinguished LIBs with no or severe thermal
runaway.”” In general, ML-assisted PFM/FEM simulations
have exhibited great potential, but are still in their infancy
and further efforts are expected.

4. Mesoscale and Macroscale Experiments

Similar to theoretical microscale methods, ML has also
demonstrated its superiority and potential in combination
with experimental studies.® Its incorporation with experi-
ments can be classified into three categories: assisting
experimental result analysis (e.g. analyzing tomography
data®), predicting key parameters from experimental data
(e.g. battery lifespan prediction!®! and monitoring the state of
health™), and optimizing experimental protocols (e.g. fast-
charge protocol optimization!’).

First, analyzing experimental results can sometimes
present great challenges. For example, to ensure the main-
tenance of electrical conductivity in electrodes, the (de)at-
tachment of electrode particles to or from the conductive
matrix needs to be monitored, which can be hard to identify
and segment (Figure 7).1*! Conventionally, the identification
and segmentation of particles are achieved from reconstruct-
ed tomography data (Figure 7a) and require manual labeling,
which is tedious and labour-intensive. Although traditional
watershed and separation algorithms are capable of distin-
guishing de-attached particles, their limitations become
pronounced when analyzing multiple fragments that have
broken away from the same particle. To tackle this problem,
Liu and co-workers developed a state-of-the-art mask region-
al convolutional neural network (Mask R-CNN), which
successfully identified over 650 unique particles of different
sizes, shapes, positions, and degrees of cracking based on
a training set of manually labeled data (Figure 7b).%
Similarly, Petrich et al. proposed a classification model to
detect cracks in electrodes, from which a pair of particles
resulted from breakage, image segmentation, or neither can
be efficiently determined.™! Besides tomography data, ML
can potentially also be incorporated into the characterization
of other images using a similar framework, such as optical
microscopy, SEM, and TEM.
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Figure 7. Machine-learning electrode particle segmentation. a) Workflow of the ML segmentation. b) Comparison of segmentations from
traditional and ML approaches. Different colors denote dlfferent particles. The scale bar in (a) is 50 um. Reproduced with permission.*!l Copyright

2020, Springer Nature.

Another major application of
machine learning in battery research
lies in predicting electrochemical
performance, as shown in Figure 8.
Common variables quantifying the
battery performance are usually
chosen as the targets for prediction,
such as the energy density, power
density, lifespan, energy efficiency,
high- or low-temperature perfor-
mance etc. In addition, encouraged
by the huge market potential of fast-
charging batteries, optimization of
the charging protocol becomes an-
other target of great interest. Com-
pared with determining the predic-
tion target or response, more effort
is required to craft the input features
to describe a battery system. In
general, the input feature can be
classified into one of three catego-
ries based on the properties it aims
to quantify: 1) the external environ-
ment, such as the temperature and
stack pressure, 2) the components of
the batteries, such as stoichiometry

24362 www.angewandte.org
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Figure 8. Correlating battery parameters and electrochemical performances through machine-
learning approaches. T: temperature.
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(cathode and anode active materials, charge/discharge reac-
tions, and electrolyte recipes), electrode loading, and electro-
lyte amount, and 3) the working parameters of the battery,
such as working time, charge/discharge current density,
terminal voltage, and state-of-charge. Of course, not all the
parameters are required, as a collection of batteries may share
common features, such as environmental temperature and
stack pressure. With the input features and output targets
identified, great challenges still remain to develop proper
models to describe their correlations. Such correlations are
often complicated and strongly coupled with multiple phys-
ical processes and chemical reactions inside the battery, such
as decomposition of the electrolyte, decomposition of the
binder, corrosion of current collectors, loss of active sub-
stance, loss of electric contact, loss of ionic contact, internal
short circuit, and thermal runway. In the following, we present
two examples to illustrate the transcendental progress made
through applying machine learning to the prediction of
battery performance.

Identifying the lifespan of a battery is one of the most
crucial yet daunting challenges for the battery industry.

Recommended charging protocols (CC1, CC2, CC3)

Minireviews A" dte

Measuring lifespan solely from experiments is impractical,
as a cycling test over 10000 rounds at 1.0 C requires a run time
of 833 days. Using ML to predict the battery lifetime based on
the information from initial cycles is, therefore, a promising
alternative to circumvent this obstacle. For example, Braatz
and co-workers developed data-driven models that can
accurately predict the cycle life of commercial lithium iron
phosphate/graphite cells from early cycle data, without any
prior knowledge of the degradation mechanisms.!*”! The initial
discharge capacity, charge time, temperature, and several
other features extracted from the discharge voltage curves
(such as the minimum, mean, variance, skewness, and kurtosis
of the change in the discharge voltage curves between cycles
100 and 10) were adopted as the model inputs. Using
information from only the first 100 cycles and trained by
data from 124 cells with cycle lives ranging from 150 to 2300
under different charging procedures, the model was able to
deliver a prediction error of 9.1 %. Furthermore, the model is
able to classify cells into low- and high-lifetime groups using
data from only the first 5 cycles, with only an impressive 4.9 %
misclassification test error.
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Figure 9. Optimizing fast-charge protocols for batteries through machine learning. a) The closed-loop optimization (CLO) system. b) The final
cycle life from validation. The Bayesian approach demonstrates great advantages over the literature-inspired and other strategies. Reproduced

with permission.”" Copyright 2020, Springer Nature.
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The cycle life of a battery is highly dependent on the
charging protocols, and a state-of-charge from 0 to 80 % in ten
minutes is demanded for practical use.”! However, both large
parameter space and high sampling variability increase the
number of experiments required, thus reducing the feasibility
of protocol optimization through only experiments. To over-
come this hurdle, Chueh and co-workers developed a Baye-
sian optimization algorithm to optimize a parameter space
specifying the current and voltage profiles of six-step, ten-
minute fast-charging protocols for maximizing battery cycle
life (Figure 9a)."l The battery lifespan can be predicted from
information from the first 100 cycles through ML models, with
outputs subsequently sent to the Bayesian optimization
algorithm. The algorithm then attempts to optimize the
charging parameters CC1, CC2, and CC3, which represent the
charging rates of the first, second, and third stages, respec-
tively. The length of experiments can firstly be reduced by the
adoption of an early prediction ML model, as it predicts the
cycle life based on data from only the first 100 cycles. In
addition, the number of experiments can be further decreased
by the Bayesian optimization algorithm, which balances the
exploration and exploitation to probe the parameter space of
charging protocols efficiently. As a result, this novel method is
capable of rapidly identifying high-cycle-life charging proto-
cols among 224 candidates in 16 days, which is over 30 times
faster than conventional exhaustive approaches. More im-
portantly, the optimized protocol identified by the ML model
outperforms protocols inspired by previous literature reports
(895 vs. 728 cycles on average; Figure 9b).

5. Summary and Outlook

As discussed above, emerging machine-learning methods
are generating a revolution in research. Experimental,
theoretical, and data tools have become three indispensable
and correlating parts in battery manufacturing, management,
and monitoring (Figure 10). An outlook on future applica-
tions of machine learning in rechargeable batteries is
discussed in the following paragraphs.

DFT/MD

“ Structure,
thermodynamics,
# and kinetics

i Properties Dataset
y ‘ Battery
\ manufacturing,
T 'y Prediction & management,
/ Multi-physics Optimization and monitoring
) -
+
Validation

Figure 10. Coupling multiscale calculations, experiments, and machine
learning in battery studies, including manufacturing, management,
and monitoring.
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First, machine learning accelerates the development of
powerful theoretical tools, such as advanced functionals for
DFT calculations, efficient potentials for MD simulations, and
novel approaches to solve multiscale physical equations. It is
expected to enable high-accuracy atomic simulations for large
systems, which makes probing complicated geometrical
structures, charge distribution, thermal and kinetic stabilities,
and ionic diffusivity at interfaces or in amorphous phases
possible. A deeper fundamental understanding of the working
mechanisms and material evolution schemes during electro-
chemical reactions can, therefore, be obtained, thereby
assisting the search and design of novel materials and battery
recipes.

Second, human intuition is very powerful in extracting
knowledge from successful trial-and-error experiments,
whereas ML-based data mining methods are able to excavate
valuable information behind numerous failed experiments."”
Specifically, data-driven methods exhibit a great potential for
monitoring the working status of batteries and forecasting
their cycle lives.

Third, the large parameter spaces and high sampling
variability have led to parameter optimization for battery
manufacturing and management being extremely challenging,
whereas ML-based models can mitigate these obstacles
through rational algorithm design. For example, ML models
can be applied to optimize the fast-charge protocol and
electrolyte component ratio. Bayesian algorithm-based ML
models have been shown to significantly reduce the param-
eter space and, consequently, the number of experiments
required. Furthermore, this approach can also be extended to
optimize the synthetic conditions of battery materials and
even propose alternative strategies for material design based
on a quantitative structure—property relationship.

Lastly, although the value and impact of machine-learning
and artificial intelligence methods in battery research con-
tinue to grow, human knowledge remains an indispensable,
and perhaps even the most important, part. The choice of
model features, as well as the development of training
algorithms, are still highly dependent on human judgement
and the knowledge of the experts. Nevertheless, we believe
that ML can bring new vitality to conventional theoretical and
experimental methods and that the revolutionary data-driven
research holds promise to accelerate the development of
future rechargeable batteries.
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